A PROOF OF THE GENERALIZED SECOND-LIMIT THEOREM IN THE THEORY OF PROBABILITY*

M. FRÉCHET AND J. SHOHAT

Introduction. A function F(x), defined for all real x, will be called a "law of probability," if the following conditions are satisfied:

(i) F(x) is monotone non-decreasing in $(-\infty, \infty)$ and continuous to the left,

(ii)
$$F(-\infty) = 0, F(\infty) = 1.\dagger$$

A particular case is represented by dF(x) = f(x)dx, where f(x), summable and ≥ 0 , is the "probability density" or "law of distribution" for x.

The expression $\int_{-\infty}^{\infty} x^s dF(x)$ is called the "sth moment" of the distribution, s taking values $0, 1, 2, \cdots$.

The Second Limit-Theorem, which was the starting point of this paper, can be stated, with A. Markoff,‡ as follows:

If a sequence of laws of probability $F_k(x)$ $(k=1, 2, \cdots)$ is such that they admit moments of all orders, and if

$$\lim_{k\to\infty} \int_{-\infty}^{\infty} x^s dF_k(x) = \pi^{-1/2} \int_{-\infty}^{\infty} x^s e^{-x^2} dx \qquad (s = 0, 1, \cdots),$$

then, for all x,

$$\lim_{k \to \infty} \int_{-\infty}^{x} dF_{k}(x) = \pi^{-1/2} \int_{-\infty}^{x} e^{-x^{2}} dx.$$

Markoff's proof is rather complicated, being based on the distribution of roots and other properties of Hermite polynomials, also on the so-called Tchebycheff inequalities in the theory of algebraic continued fractions. He points out that the theorem still holds if we replace the law of probability $\pi^{-1/2} \int_{-\infty}^{x} e^{-x^2} dx$ by a more general one: $\int_{-\infty}^{x} f(x) dx$ (in which case, however, his considerations need many supplements).§

^{*} Presented to the Society, April 18, 1930; received by the editors August 22, 1930.

[†] In fact, if X is a fortuitous variable (finite, not necessarily bounded), and if F(x) is the probability that X < x, then F(x) will satisfy these conditions, provided we assume that the principle of total probabilities still holds for a *countable infinity* of inconsistent events.

[‡] A. Markoff, Theory of Probability, 4th edition (1924, in Russian), p. 522.

[§] Cf. J. Chokhate, Sur la convergence des quadratures mécaniques dans un intervalle infini . . . , Comptes Rendus, vol. 186 (1928), pp. 344-346.

The same theorem has recently attracted the attention of many investigators: R. von Mises,* G. Pólya,† Paul Lévy,‡ Cantelli,§ Jacob|| and others.

The object of this paper is (a) to establish a general limit-theorem, removing many restrictions imposed otherwise on the functions involved and their moments, so that the above statement dealing with the law of probability $\pi^{-1/2} \int_{-\infty}^{x} e^{-x^2} dx$ (we shall call it hereafter the "classical case") is therein included as a very special case; (b) to give an *elementary* proof, which does not use either characteristic functions or algebraic continued fractions, being based on a well known Montel-Helly theorem concerning sequences of monotonic functions.

A brief account will first be given of the "moments-problem" to which the theorem in question is closely related.

1. The moments-problem. Given a certain interval (a, b), finite or infinite, and an infinite sequence of real constants $c_0, c_1, \dots, find$ a function $\psi(x)$, non-decreasing in (a, b), \P such that

$$\int_a^b x^s d\psi(x) = c_s \qquad (s = 0, 1, \cdots).$$

We call this the moments-problem corresponding to the data $\{c_{\bullet}\}$. We may assume, without loss of generality, $\psi(a) = 0$.

It is known that if (a, b) be finite, then the moments-problem cannot have more than one solution (if it has any),** if we generally agree to consider as

$$\int_a^b x^a dF(x) = 0 \qquad (s = 0, 1, \dots; F(x) = \psi_1 - \psi_2; F(a) = 0),$$

$$F(b) = F(a)$$
 (for $s = 0$), $\int_a^b x^l F(x) dx = 0$ ($l = 0, 1, \dots$; integration by parts).

The latter relations lead to the required conclusion: F(x) = 0 at all points of continuity in (a, b), by the following reasoning due to Stieltjes (Correspondance d'Hermite et Stieltjes, Paris, 1905, pp. 337-338). If such a point z exists (a < z < b), where $F(z) \neq 0$, then $1 - (x - z)^2/M > 0$ $(a \le x \le b)$, for a sufficiently large M; hence, it is easily seen that

$$I = \int_{a}^{b} F(x) [1 - (x - z)^{2}/M]^{n} dx,$$

^{*} R. von Mises, Fundamentalsätze der Wahrscheinlichkeitsrechnung, Mathematische Zeitschrift, vol. 4 (1919), pp. 1-97.

[†] G. Pólya, Über den zentralen Grenzwertsatz der Wahrscheinlichkeitsrechnung..., Mathematische Zeitschrift, vol. 8 (1920), pp. 171-181.

[‡] Paul Lévy, Calcul des Probabilités, Paris, 1925, Chapter IV.

[§] F. P. Cantelli, Una nuova dimostrazione del secondo teorema-limite . . . , Rendiconti di Palermo, vol. 52 (1928), pp. 151-174.

^{||} Jacob, De l'application des intégrales généralisées de Fourier au calcul des probabilités, Comptes Rendus, vol. 188 (1929), pp. 541-43, 754-56.

[¶] The case of $\psi(x)$ having but a finite number of points of increase in (a, b) is trivial.

^{**} A simple proof is the following. The existence of two solutions $\psi_1(x), \psi_2(x)$ implies

identical two solutions $\psi_1(x)$, $\psi_2(x)$ which coincide at all points of continuity.* We express this property by saying that the moments-problem for a finite interval is "determined."

On the other hand, the moments-problem for an infinite interval may be "indeterminate," i.e., it may admit infinitely many solutions. In fact, in the formula

$$\int_0^\infty y^{a-1}e^{-by}dy = \frac{\Gamma(a)}{b^a}$$

take

$$b = k + di \quad (k > 0), a = (n + 1)/\lambda, (2n + 1)/\lambda \quad (n = 0, 1, \dots),$$

$$\frac{d}{k} = \tan \lambda \pi, \quad \tan \frac{\mu \pi}{2} \quad (\lambda, \mu \text{ defined below}), \quad y = x^{\lambda},$$

and we get functions having all moments = 0:†

$$\int_0^\infty x^n e^{-\kappa x^{\lambda}} \sin(\kappa x^{\lambda} \tan \lambda \pi) dx = 0 \qquad (\kappa > 0, \, 0 < \lambda < \frac{1}{2}),$$

$$\int_{-\infty}^\infty x^n e^{-\kappa x^{\mu}} \cos\left(\kappa x^{\mu} \tan \frac{\mu \pi}{2}\right) dx = 0$$

$$\left(\kappa > 0, \, 0 < \mu = \frac{2s}{2s+1} < 1, \, s \text{ a positive integer}\right).$$

Hence we get infinitely many non-decreasing functions

(1)
$$\int_0^x e^{-\kappa x^{\lambda}} \left[1 + h \sin \left(\kappa x^{\lambda} \tan \lambda \pi \right) \right] dx,$$

$$\int_{-\infty}^x e^{-\kappa x^{\mu}} \left[1 + h \cos \left(\kappa x^{\mu} \tan \frac{\mu \pi}{2} \right) \right] dx \qquad (-1 \le h \le 1),$$

for *n* very large, is different from zero, which is impossible, I being a linear combination of the moments of F(x), all of which vanish. (We notice that such M does not exist for (a, b) infinite.) Moreover, if $\psi_i(x)$ is continuous to the left, then $\psi_1(x) = \psi_2(x)$ everywhere in (a, b), since $\psi_i(x-0) = \lim \psi_i(X)$, where X(< x) converges to x, being always a point of continuity of $\psi_i(x)$, i=1, 2.

* Also at the points a, b, if (a, b) be finite; this, however, necessarily follows from the relations

$$\psi_{1,2}(a) = 0, \quad \int_a^b d\psi_1(x) = \int_a^b d\psi_2(x) = c_0.$$

† These have been given by Adamoff (*Proof of a theorem of Stieltjes*, Proceedings of the Kazan Mathematical Society (1911, in Russian)) and by Stekloff (*Application de la théorie de fermeture*..., Mémoires de l'Académie des Sciences, Petrograd, vol. 33 (1915)), but the original statement is due to Stieltjes (loc. cit., p. 230).

solutions of the same moments-problem for $(0, \infty)$ and $(-\infty, \infty)$ respectively. Either of the following conditions ensures the determined character of the moments-problem for an infinite interval:

(2)
$$\sum_{n=1}^{\infty} c_{2n}^{-1/(2n)} \quad \text{diverges*} \qquad \left(c_n = \int_{-\infty}^{\infty} x^n dF(x)\right);$$

(3)
$$dF(x) = p(x)dx \ (p(x) \ge 0 \ \text{on} \ (a, b))$$

with $p(x) < M |x|^{\alpha-1} e^{-\kappa |x|^{\lambda}}$ for $|x| \ge x_0$, sufficiently large (M, α, κ) are positive constants; $\lambda \ge \frac{1}{2}$ for $(a, b) = (0, \infty)$, $\lambda \ge 1$ for $(a, b) = (-\infty, \infty)$.

On the other hand, the moments-problem is indeterminate if $d\psi(x) = p(x)dx$, and for |x| sufficiently large (see (1))

$$p(x) > e^{-\kappa |x|^{\lambda}} (\kappa > 0)$$
 with $\lambda < \frac{1}{2}$ for $(0, \infty)$, $\lambda < 1$ for $(-\infty, \infty)$.

2. A generalized statement of the second limit-theorem. Given a sequence of laws of probability $F_n(x)$ $(n=1, 2, \cdots)$, with the following properties: (i) the moments $m_n^{(r)} = \int_{-\infty}^{\infty} x^r dF_n(x)$ of all orders $r=0, 1, \cdots$ exist for $n=1, 2, \cdots$, or at least from a certain rank n on (possibly depending on r); (ii) the quantities $m_1^{(r)}$, $m_2^{(r)}$, \cdots , for any $r=0, 1, \cdots$, lie, when they exist, between two fixed limits independent of n (but possibly dependent on r). Then a subsequence $\{C_i(x) \equiv F_{n_i}(x)\}$ $(i=1, 2, \cdots; n_1 < n_2 < \cdots; n_i \to \infty)$ can be extracted such that $(\alpha) \lim_{n\to\infty} \int_{-\infty}^{\infty} x^r dC_i(x)$ exists $(=m_r)$, \S for $r=0, 1, \cdots$; (β) the subsequence $\{C_i(x)\}$ converges for any x to one fixed law of probability $\psi(x)$, save, perhaps, at its points of discontinuity; $(\gamma) \int_{-\infty}^{\infty} x^r d\psi(x)$ exists and $=m_r(r=0, 1, \cdots)$.

The proof will be arranged in several steps.

3. Existence of $m_r(r=1, 2, \cdots)$. We apply here the classical "diagonal method." The hypothesis of the uniform boundedness of $\{m_n^{(r)}\}$ for all $r=1, 2, \cdots$, enables us to extract from the sequence $\{m_n^{(1)}\}$ a subsequence $\{m_{p_i}^{(1)}\}$ converging to a finite limit m_1 . The sequence $\{m_{p_i}^{(2)}\}$ gives rise to a subsequence $\{m_{q_i}^{(2)}\}$ converging to a finite limit m_2 , and so on. We thus get a sequence $\{m_{p_1}^{(2)}, m_{q_2}^{(r)}, \cdots\}$ converging to a finite limit m_r , for any

^{*} T. Carleman, Sur les équations intégrales singulières . . . , Uppsala, 1923, p. 219.

[†] Stieltjes, Recherches sur les fractions continues, Oeuvres, vol. II, pp. 402-559, where (3) is given for $(0, \infty)$ only. The corresponding condition for $(-\infty, \infty)$ follows directly.

[‡] It can be easily shown that, if $x_0 > 1$ and if, in $(1, x_0)$, p(x) is bounded in the sense of Lebesgue, i.e., disregarding a set of zero measure, then (3) is included in (2). Furthermore, if $\psi_1(x)$, $\psi_2(x)$ are solutions of a determined moments-problem for the interval (a, ∞) $(a=0, -\infty)$, we can arrange so as to have $\psi_1(x) = \psi_2(x)$ everywhere in (a, ∞) , since $\psi_1(x) = \psi_2(x)$ at all points of continuity, it being permissible, as above, to take $\psi_1(x)$ continuous to the left (i=1, 2).

 $[\]S$ m_0 exists and = 1, by definition of law of probability.

^{||} It follows that there is necessarily at least one solution of the moments-problem corresponding to the data $\{m_r\}$.

 $r=1, 2, \cdots$. The corresponding laws of probability $\gamma_1(x) \equiv F_{p_1}(x)$, $\gamma_2(x) \equiv F_{q_2}(x)$, \cdots clearly satisfy (α) . The reasoning still holds if none of the $F_n(x)$ has all of its moments finite.

4. Existence of a limiting law of probability $\psi(x)$. This follows by applying to $\{F_n(x)\}$ the Montel-Helly* theorem on monotonic functions. We state it in a slightly generalized form:

If a family $\{f(x)\}$ of functions, non-decreasing on $(-\infty, \infty)$, is uniformly bounded in any finite interval (i.e. $|f(x_0)| < A(x_0)$ at any finite point x_0 , $A(x_0)$ being the same for all f(x)), then from any infinite sequence of this family we can extract a subsequence which converges, for any x, to a non-decreasing function. Moreover, the convergence is uniform in any interval, where the limit-function is continuous.

The theorem holds, with proper modifications, for families of functions of bounded variation.

In order to prove (β) , it suffices to apply this theorem to the sequence $\{\gamma_i(x)\}$, since $0 \le \gamma_i(x) \le 1$ for $-\infty \le x \le \infty$. We extract then from it a sequence $\{C_p(x)\}$ converging everywhere to a non-decreasing function $\phi(x)$, and we take $\psi(x) \equiv \phi(x-0)$.

The following remarks are important:

(i) The limit-function $\psi(x)$ of the $\{C_p(x)\}$ varies effectively from 0 to 1, i.e.

$$\psi(-\infty) = 0, \ \psi(\infty) = \int_{-\infty}^{\infty} d\psi(x) = 1.\dagger$$

(ii) For any $r = 0, 1, \dots$, the convergence of

$$\lim_{a \to -\infty, b \to \infty} \int_a^b x^r dF_n(x) \text{ to } \int_{-\infty}^\infty x^r dF_n(x)$$

is uniform with respect to n, at least from a certain rank n on.

(iii)
$$\lim_{x\to\infty} x^s(1-F_n(x)) = 0$$
, $\lim_{x\to-\infty} |x|^s F_n(x) = 0$ $(n = 1, 2, \dots; s > 0 \text{ arbitrary})$.

(i) follows from the inequalities

(4)
$$\int_{b}^{\infty} x^{r} dF_{n}(x) \leq \frac{m_{n}^{(2r+2)}}{b^{r+2}} \quad (b > 1); \quad \int_{-\infty}^{a} x^{r} dF_{n}(x) \leq \frac{m_{n}^{(2r+2)}}{|a|^{r+2}} \quad (a < -1),$$

^{* (}a) P. Montel, Sur les suites infinies des fonctions, Annales de l'École Normale Supérieure, 1907; (b) E. Helly, Über lineare Funktionaloperationen, Sitzungsberichte der Akademie der Wissenschaften, Wien, vol. 121 (1912), pp. 265-297.

[†] This is by no means obvious. Take, for example, $F_n(x) = 0$ (x < -n), $= \frac{1}{2}(-n \le x \le n)$, = 1(x > n). Here $\lim_{n \to \infty} F_n(x) = \psi(x) \equiv \frac{1}{2}$ for $-\infty \le x \le \infty$.

which, applied to $\{C_p(x)\}$, yield, for r=0 and $p\to\infty$,

(5)
$$(0 \le)1 - \psi(b) \le \frac{1 + m_2}{b^2}, \ 0 \le \psi(a) \le \frac{1 + m_2}{a^2}$$
 $(b, -a > 1),$

and this proves (i) by letting $b \rightarrow \infty$, $a \rightarrow -\infty$.

(ii) follows directly from (4), taking into account the uniform boundedness of $\{m_n^{(2r+2)}\}\ (n=1, 2, \cdots)$.

In order to establish (iii), we write

$$1 - F_n(b) = \int_b^\infty dF_n(x) \le \int_b^\infty \left(\frac{x}{b}\right)^{2r} dF_n(x); \ b^s [1 - F_n(b)] \le \frac{m_n^{(2r)}}{b^{2r-s}}$$

$$(b > 0, 0 < s < 2r),$$

and a similar expression for $|a| \cdot F_n(a) (a < -1)$.

5. $\int_{-\infty}^{\infty} x^r d\psi(x)$ exists and $= m_r(r=0, 1, \cdots)$. This statement being the fundamental part of the theorem, we give for it two proofs.

Proof I. We apply the two following theorems due respectively to Hamburger* and to Helly,† the proofs of both of which are very elementary.

Hamburger's Theorem. Suppose (i) $\int_{-\infty}^{\infty} \left[1/(z+x)\right] d\psi(x)$ converges for z=iy with y>0, $\psi(x)$ denoting a function non-decreasing in $(-\infty, \infty)$; (ii) $F(z) \equiv \int_{-\infty}^{\infty} \left[1/(z+x)\right] d\psi(x)$ has, for $z=iy\to\infty$, an asymptotic expansion (in Poincaré's sense) $F(z) \sim \sum_{r=1}^{\infty} (-1)^r c_r/z^{r+1}$ (c, real). Then $\int_{-\infty}^{\infty} x^r d\psi(x)$ exists and $=c_r$ ($\nu=0,1,\cdots$).

Helly's Theorem. Given a sequence $\{V_n(x)\}$ of functions of bounded variation on a finite interval (a, b) such that (i) the total variations of all $V_n(x)$ on (a, b) are uniformly bounded; (ii) $\lim_{n\to\infty} V_n(x) = v(x) \ddagger exists$ for $a \le x \le b$, with the possible exception of a countable set of points not including a, b. Then $\lim_{n\to\infty} \int_a^b f(x) dV_n(x) = \int_a^b f(x) dv(x)$, for any continuous function f(x).

Going back to the given sequence $\{F_n(x)\}$ and to the above function $\psi(x) = \lim_{p\to\infty} \{C_p(x)\}$, we notice, first, that $\int_{-\infty}^{\infty} f(x) d\psi(x)$, $\int_{-\infty}^{\infty} f(x) dF_n(x)$ certainly exist if f(x) is bounded on $(-\infty, \infty)$ and continuous on any finite interval. Furthermore, since, as we have seen, $\int_{-\infty}^{\infty} dC_p(x)$ converges *uniformly* (with respect to p), an easy application of Helly's theorem yields

^{*} H. Hamburger, Über eine Erweiterung des Stieltjesschen Momentenproblems, I, II, III, Mathematische Annalen, vols. 81-82 (1920), pp. 235-319, 120-64, 168-87.

[†] Loc. cit

[‡] Necessarily of bounded variation, by virtue of the Montel-Helly theorem extended to this class of functions.

(6)
$$\lim_{p\to\infty} \int_{-\infty}^{\infty} f(x)dC_p(x) = \int_{-\infty}^{\infty} f(x)d\psi(x),$$

(7)
$$\lim_{z\to\infty} \int_{-\infty}^{\infty} \frac{dC_p(x)}{z+x} = \int_{-\infty}^{\infty} \frac{d\psi(x)}{z+x} \qquad (z=iy; y>0).$$

Consider now the expression

(8)
$$f_{p}(z) \equiv \int_{-\infty}^{\infty} \frac{dC_{p}(x)}{z+x} = \sum_{r=0}^{\nu-1} (-1)^{r} \frac{\alpha_{p}^{(r)}}{z^{r+1}} + \frac{(-1)^{r}}{z^{\nu+1}} I_{r,p} \qquad (\nu \text{ arbitrary}),$$

$$I_{r,p} = \int_{-\infty}^{\infty} x^{r} \left(\frac{z}{z+x}\right) dC_{p}(x), \quad \alpha_{p}^{(r)} = \int_{-\infty}^{\infty} x^{r} dC_{p}(x).$$

Letting $p \rightarrow \infty$, using (7) and the property

$$\lim_{r \to \infty} \alpha_p^{(r)} = m_r \qquad (r = 0, 1, \cdots),$$

we get

(9)
$$F(z) \equiv \int_{-\infty}^{\infty} \frac{d\psi(x)}{z+x} = \sum_{r=0}^{r-1} \frac{(-1)^r m_r}{z^{r+1}} + \frac{(-1)^r}{z^{r+1}} \lim_{p \to \infty} I_{r,p}.$$

Observing that $|z/(z+x)| \le 1$ $(-\infty \le x \le \infty, z=iy, y \ge y_0 > 0)$, we get

$$|I_{2s,p}| \leq \alpha_p^{(2s)};$$

$$|I_{2s-1,p}| \leq \left| \int_{-1}^1 x^{2s-1} dC_p(x) \right| + \int_{1}^{\infty} x^{2s} dC_p(x) + \int_{-\infty}^{-1} x^{2s} dC_p(x)$$

$$\leq 1 + \alpha_p^{(2s)},$$

$$\left| \lim_{p \to \infty} I_{2s-\sigma,p} \right| \leq \lim_{p \to \infty} (1 + \alpha_p^{2s}) = 1 + m_{2s} \quad (\sigma = 0, 1; s = 1, 2, \dots),$$

(10)
$$\lim_{z=iy\to\infty} \left| z^r \left[F(z) - \sum_{r=0}^{\nu-1} (-1)^{\nu} \frac{m_r}{z^{r+1}} \right] \right| = \lim_{z=iy\to\infty} \left| \frac{1}{z} \lim_{p\to\infty} I_{r,p} \right| = 0.$$

Formula (10), where ν is arbitrary, gives the asymptotic expansion of F(z):

$$F(z) \sim \sum_{r=1}^{\infty} (-1)^r \frac{m_r}{z^{r+1}} \qquad (z = iy \to \infty).$$

Hence, Hamburger's theorem is applicable and proves (γ) .

Proof II. We restrict ourselves to the domain of real numbers, making use of the following extension of Helly's theorem to the infinite interval $(-\infty, \infty)$.

Given a sequence $\{v_n(x)\}$ defined on $(-\infty, \infty)$ such that (i) $v_n(x)$ is of bounded variation on any finite interval, (ii) all $v_n(x)$ and their total variations are uniformly bounded on any finite interval, (iii) $\lim_{n\to\infty}v_n(x)=v(x)$ exists for all x, with the possible exception of a countable set of points, (iv) $\int_a^b f(x) dv_n(x)$ converges uniformly (with respect to n) to $\int_{-\infty}^{\infty} f(x) dv_n(x) (a \to -\infty, b \to \infty)$, if f(x) is continuous everywhere (not necessarily uniformly). Then $\int_{-\infty}^{\infty} f(x) dv(x)$ exists and $=\lim_{n\to\infty}\int_{-\infty}^{\infty} f(x) dv_n(x)$.

We notice, first, that v(x) is of bounded variation (see footnote on page 538) on any finite interval, secondly (by virtue of Helly's theorem), that

$$\left| \int_{b}^{b'} f(x) dv(x) \right| = \left| \lim_{n \to \infty} \int_{b}^{b'} f(x) dv_n(x) \right| < \epsilon$$

(bb'>0, n, |b|, |b'|) sufficiently large; $\epsilon>0$ arbitrarily small); hence, $\int_{-\infty}^{\infty} f(x) dv(x) exists$. Furthermore,

$$\Delta_{n} = \left| \int_{-\infty}^{\infty} f dv - \int_{-\infty}^{\infty} f dv_{n} \right| \leq \left| \int_{-\infty}^{a} f dv \right| + \left| \int_{-\infty}^{a} f dv_{n} \right| + \left| \int_{b}^{\infty} f dv \right|$$

$$+ \left| \int_{b}^{\infty} f dv_{n} \right| + \left| \int_{a}^{b} f dv - \int_{a}^{b} f dv_{n} \right|$$

$$(a < 0, b > 0)$$

can be made as small as we please by taking -a, b, and then n sufficiently large. Hence $\lim_{n\to\infty} \Delta_n = 0$.

Remark. The new condition (iv) is essential. The following example shows that if (iv) is not satisfied, the theorem may not hold: f(x) = x, $v_n(x) = 0$ $(x \le 0)$, $1 - 1/2^n(0 < x \le 4^n)$, $1(x > 4^n)$. Here

$$\lim_{n\to\infty} v_n(x) = v(x) = 0 \ (x \le 0), \ 1(x > 0);$$

$$\lim_{n\to\infty}\int_{-\infty}^{\infty}xdv_n(x)=\lim_{n\to\infty}4^n\cdot\frac{1}{2^n}=\infty\neq\int_{-\infty}^{\infty}xdv(x)=0.$$

It suffices to apply the above theorem, with $f(x) = x^r(r = 0, 1, \cdots)$, to the above sequence $\{C_p(x)\}$ which satisfies all four conditions stated, and (γ) is established.

6. Special case. A direct corollary is the following

THEOREM. If $\lim_{n\to\infty} m_n^r$ exists $(=m_r)$ for $r=0, 1, \dots$, then at least one fixed law of probability, say F(x), exists such that m_r is its rth moment $(r=0, 1, \dots)$, and a subsequence $\{C_i(x) \equiv F_{n_i}(x)\}$ can be extracted from the given

^{*} $v_n(x)$, v(x) have each a single saltus = $1/2^n$, 1 at $x=4^n$, 0 respectively.

sequence $\{F_n(x)\}$ of laws of probability such that $\lim_{i\to\infty} C_i(x) = F(x)$ for any x. If, in addition, the $\{m_r\}$ are such that the corresponding moments-problem is determined, then the sequence $\{F_n(x)\}$ itself converges, for $n\to\infty$, to F(x) at any point of continuity of F(x).

We need a proof for the last part only. Assume that a point x_0 of continuity of F(x) exists such that $\{F_n(x_0)\}$ does not converge to $F(x_0)$. Hence, a subsequence $\{C_k(x_0) \equiv F_{n_k}(x_0)\}$ can be extracted such that $C_k(x_0)$ converges, for $k \to \infty$, to a certain number $A \neq F(x_0)$. On the other hand, we have seen that the sequence $\{C_k(x)\}$ gives rise to a subsequence $\{d_i(x)\}$ which, for any x, converges, as $i \to \infty$, to a function d(x), having the same moments $m_r(r=0, 1, \cdots)$ as F(x), and therefore, since, by hypothesis, the moments-problem corresponding to $\{m_r\}$ is determined,

(11)
$$\lim_{i \to \infty} d_i(x_0) = d(x_0) = F(x_0)$$

(F(x)) being continuous at $x = x_0$, which is impossible, $\{d_i(x_0)\}$ being a subsequence of $\{C_k(x_0)\}$ which converges, but not to $d(x_0)$. We have seen also ((i), p. 537) that $F(-\infty) = 0$, $F(\infty) = 1$.

The condition that the moments-problem corresponding to $\{m_r\}$ be determined is not only sufficient for the validity of the limiting relation

$$\lim_{n \to \infty} F_n(x) = F(x)$$

(at any point of continuity of F(x)),* but it is also necessary. For if F(x) and $\phi(x)$ be two distinct solutions of the moments-problem in question, then $F_n(x)$ should converge simultaneously to F(x) and $\phi(x)$ at all points of continuity, while at least one such point x_0 exists where $F(x_0) \neq \phi(x_0)$.†

7. The classical case: $m_r = \pi^{-1/2} \int_{-\infty}^{\infty} x^r e^{-x^2} dx (r=0, 1, \cdots)$. Here

$$\lim_{n\to\infty} \int_{-\infty}^{\infty} x^r dF_n(x) = \pi^{-1/2} \int_{-\infty}^{\infty} x^r e^{-x^2} dx \quad (r = 0, 1, 2, \cdots)$$

implies

$$\lim_{n\to\infty} \int_{-\infty}^x dF_n(x) = \pi^{-1/2} \int_{-\infty}^x e^{-x^2} dx \ (x \text{ arbitrary}).$$

$$m_{2n} \le C \left(\frac{n}{c^2 e}\right)^n (C, c = \text{const.}), \lim_{n\to\infty} m_{2n}^{1/(2n)} / n \text{ is finite}, m_{2n} \frac{[\psi(2n)]^{2n}}{2n!} < 1 \ (n > n_1; \psi(n)_{n\to\infty} \to \infty)$$

are but special cases of Carleman's condition (2).

^{*} Even everywhere in $(-\infty, \infty)$, F(x) being a law of probability, hence continuous to the left (see Introduction).

[†] The conditions imposed by different writers on the quantities $\{m_r\}$ are such as to ensure the determined character of the corresponding moments-problem. In fact, one sees readily that the conditions of R. von Mises, Pólya, and Cantelli (loc. cit.)

In fact, the moments-problem corresponding to $\{m_r\}$ is determined (by virtue of (2) or (3)), and

$$F(x) = \pi^{-1/2} \int_{-\infty}^{x} e^{-x^2} dx$$

is continuous for all x.

We see that the classical case is but a very special case of the general second limit-theorem.

8. The determined character of the moments-problem in the classical case. The conditions (2, 3) ensuring the determined character of the moments-problem have been established by means of very profound, but also complicated, considerations (continued fractions, singular integral equations). It seems of interest to give an *elementary* proof involving a simple theorem of Pólya.*

We wish to prove the following

THEOREM. Given a law of probability $\psi_1(x)$ such that

$$m_{2r} = \int_{-\infty}^{\infty} x^{2r} d\psi_1(x) = \Gamma\left(\frac{2r+1}{\lambda}\right) / \Gamma\left(\frac{1}{\lambda}\right) = \frac{\lambda}{2\Gamma(1/\lambda)} \int_{-\infty}^{\infty} x^{2r} e^{-|x|^{\lambda}} dx,$$

$$(12)$$

$$m_{2r+1} = \int_{-\infty}^{\infty} x^{2r+1} d\psi_1(x) = 0 = \frac{\lambda}{2\Gamma(1/\lambda)} \int_{-\infty}^{\infty} x^{2r+1} e^{-|x|^{\lambda}} dx$$

$$(\lambda \ge 1; \ r = 0, 1, \cdots).$$

Then necessarily

$$\psi_1(x) = \frac{\lambda}{2\Gamma(1/\lambda)} \int_{-\infty}^x e^{-|x|^{\lambda}} dx$$

for any x. In other words, $\psi_1(x)$ is uniquely determined by (12).

Assume the existence of two such functions $\psi_1(x)$ and $\psi_2(x)$. Employing the reasoning of §1 (footnote on page 534) and using property (iii), page 537.

$$\lim_{x \to \infty} x^{s}(1 - \psi_{i}(x)) = \lim_{x \to -\infty} |x|^{s} \psi_{i}(x) = 0 \quad (i = 1, 2; s > 0 \text{ arbitrary}),$$

we conclude that

(13)
$$\int_{-\infty}^{\infty} x^{l} F(x) dx = 0 \quad (l = 0, 1, \dots; F = \psi_{1} - \psi_{2} = (1 - \psi_{2}) - (1 - \psi_{1})).$$

^{*} G. Pólya, Über den Gaussschen Fehlergesetz, Astronomische Nachrichten, vol. 208 (1919), No. 4981, pp. 185-192.

On the other hand, a reasoning similar to that of §4 leads, making use of (12) and the asymptotic expression for the Γ function, to

(14)
$$|F(x_0)| < \frac{2m_{2n}}{x_0^{2n}}$$
 (*n* very large, x_0 arbitrary),
$$|F(x_0)| < Ce^{(-1/2)|x_0|^{\lambda}}$$

$$\left(\left(\frac{2n}{\lambda} \right)^{2/\lambda + 1/(2n)} < x_0^2 < \left(\frac{4n}{\lambda} \right)^{2/\lambda} \right),$$
 $C = \text{const. independent of } n \text{ and } x_0.$

Therefore,

$$\int_{-\infty}^{\infty} \left| F(x) \right| e^{c|x|} dx \qquad (0 < c < \frac{1}{2})$$

exists. But this is precisely the condition imposed by Pólya,* which leads to the required conclusion: $F(x) \equiv 0$ at all points of continuity.†

PARIS, FRANCE

^{*} Loc. cit. p. 187. For the classical case (λ =2) cf. M. H. Stone, Developments on Hermite polynomials, Annals of Mathematics, vol. 29 (1927), pp. 1-13.

[†] After the present paper had been prepared for publication, we came across an interesting article by A. Wintner: Über den Konvergenzsatz der mathematischen Statistik, Mathematische Zeitschrift, vol. 28 (1928), pp, 470–480, some of the results of which are similar to those obtained above.